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Introduction
Influenza virus infection is a global health problem. In the Unit-
ed States in every influenza season since 2010, the US Centers for 
Disease Control and Prevention estimates that 9 million to 49 mil-
lion symptomatic infections occurred. These influenza infections 
led to 4 million to 23 million medical visits, 140,000 to 960,000 
hospitalizations, and 12,000 to 79,000 deaths annually (1). Glob-
ally, the WHO estimates that seasonal influenza causes 3 mil-
lion to 5 million cases of severe illness and 290,000 to 650,000 
annual deaths (2). In addition to the burden of seasonal influenza 
epidemics, the last 4 influenza A pandemics, occurring in 1918 
(H1N1), 1957 (H2N2), 1968 (H3N2), and 2009 (H1N1), resulted in 
between 22 million and 58 million fatalities (3).

Countermeasures for seasonal and pandemic influenza out-
breaks consist of vaccination, antiviral drugs, physical barriers, 
hygiene, and physical distancing. Vaccination is an effective 
measure to control seasonal influenza and mitigate the severity 
of a pandemic. Unfortunately, currently available vaccines gen-
erate strain-specific immunity with limited protection against 
subtypes not included in the vaccine formulation (3). Therefore, 
major efforts are under way to develop a universal vaccine that 
induces broadly neutralizing humoral immunity. One strategy 
is to direct vaccine immune responses toward the stalk region 
of influenza hemagglutinin (HA), which is less variable than 
the globular head region (3). In addition to vaccines, 3 class-
es of influenza antivirals are approved in the United States and 
Europe. M2 ion channel blockers (amantadine, rimantadine) 
have become largely ineffective as a result of resistance (4). 
Neuraminidase inhibitors (oseltamivir, zanamivir, peramivir) 
and the cap-dependent endonuclease inhibitor baloxavir mar-
boxil each reduce symptoms by only about 1 day (5–7). Thus, for 
both seasonal influenza and pandemic preparedness, there is a 
strong need for more effective influenza therapeutics and for 
models to study disease and therapeutic responses.

Serum antibodies recognizing HA have long been associated 
with immunity to influenza infection (8). Newer data suggest that 
anti-neuraminidase antibodies can also confer immunity (9, 10). 
Helper and cytotoxic T cell functions both participate in effective 
influenza immune responses. Preexisting virus-specific CD4+ cells 
correlated with protection in an experimental setting (11). The 
presence of CD8+ T cell responses to conserved viral polymerase, 
matrix protein, and nucleoprotein epitopes may mitigate the sever-
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(18–20) offer hints that additional cellular features related to pro-
tection and severity of infection remain to be elucidated. Howev-
er, still lacking is detailed information on the dynamics of many 
immune cell subsets during human influenza infection, critical 
knowledge for the development of more effective therapeutics.

ity of illness during ongoing infections (12, 13). Moreover, innate 
immune cells such as monocytes, dendritic cells (DCs), and plas-
macytoid DCs (pDCs) are important for pathogen sensing, trig-
gering cytokine production and the initiation of effective antiviral 
immune responses (14–17). Whole-blood transcriptomic studies 

Figure 1. Influenza challenge model in human volunteers. (A) Schedule of assessments performed throughout the screening, confinement, and follow-up phases 
of the study. Study days –1 and 1 are consecutive calendar days. Intranasal virus inoculation was performed on study day 1 immediately after blood draw. NP, naso-
pharyngeal. (B) Of the screened population (n = 437), the distributions of ages for those with HAI titers >1:10 (eligible for inclusion) and with HAI titers ≤1:10 (ineli-
gible). (C) Viral titers as measured by qRT-PCR in nasopharyngeal swabs (n = 19 virus shedders). Viral titers were below the limit of detection for all participants on 
study day –1, and for 16 individuals throughout the study (nonshedders). (D) Stalk-specific and full-length-HA antibody seroconversion measured by ELISA. Values 
shown are day 29 relative to day –1. (E) Mean daily symptom score as determined by participant-reported symptom scorecard. (F–I) Baseline-normalized values for 
maximum daily oral temperature (F), mean pulse rate (G), systolic blood pressure (H), and diastolic blood pressure (I). Vital signs were measured up to 4 times dai-
ly. (J–M) Baseline-normalized plasma cytokine and chemokine levels, in relative fluorescence units (RFU), measured by Luminex assay for IP-10 (J), TRAIL (K), IL-10 
(L), and eotaxin-2 (M). In E–M, data for virus shedders are indicated with filled squares and solid lines; data for nonshedders are indicated with open squares and 
dashed lines (mean ± SEM). In F–M, values plotted are normalized to baseline (average of day –1, 1). (C–M) n = 35 volunteers. Welch’s t test (B and D); Bonferroni’s 
adjusted P value of the time-shedding interaction term (E–M). Red arrows indicate the time point of virus inoculation throughout all figures.
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clinical exam scores, volunteer-reported symptom scores, and 
seroconversions were not significantly different between cohorts 
(Supplemental Tables 2 and 3). Furthermore, when all study data 
generated for all volunteers were plotted together, shedding status 
was the major driver of variance (Supplemental Figure 2). There-
fore, for the analysis described here, individuals were grouped 
into virus shedders and nonshedders irrespective of their initial 
inoculation dose.

Virus shedding was quantified by quantitative reverse tran-
scriptase PCR (qRT-PCR) in nasopharyngeal swabs collected 
on the day before challenge (study day –1) and daily starting 24 
hours after inoculation. Viral titers were below the limit of detec-
tion for all participants on study day –1, and for 16 individuals 
(nonshedders) no shedding was detected throughout the study 
(Figure 1C). Serum antibodies recognizing either full-length HA 
or the HA stalk were quantified by 2 separate ELISAs. On day –1, 
preexisting full-length HA antibody titers, but not preexisting 
HA stalk antibody titers, were higher among volunteers who did 
not develop virus shedding (Supplemental Figure 3, A and B). 
Seroconversion to both full-length HA and HA stalk occurred to 
a greater extent in shedders compared with nonshedders on day 
29 (Figure 1D). Mean daily symptom scores, as reported by volun-
teers and physician exams, were elevated in shedders compared 
with nonshedders (Figure 1E and Supplemental Figure 3C). Base-
line-normalized oral temperature, pulse rate, and blood pressure 
were significantly higher in shedders with peak deviations approx-
imately coinciding with days when viral titers and symptom scores 
were at their maximums (Figure 1, F–I). Sixty-five cytokines and 
chemokines were measured in plasma, 5 of which changed sig-
nificantly during infection. In virus shedders, levels of cytokines 
previously associated with influenza (27, 28), including plasma 
IP-10 (also known as CXCL10), soluble TRAIL, IL-10, and IL-18, 
increased. In contrast, levels of eotaxin-2, a factor associated with 
eosinophil recruitment to the lung and eosinophilic bronchial 
inflammation (29, 30), decreased (Figure 1, J–M, and Supplemen-
tal Figure 4).

These data indicate that the influenza challenge model 
described here induces measurable virus infection in healthy 
volunteers including virus shedding, symptoms, vital signs, and 
serology changes consistent with clinical disease. This model is 
suitable to investigate the dynamics of cellular immune responses 
to influenza infection by comparing individuals who do and do not 
shed virus after challenge.

Mass cytometry recapitulates clinical hematology during influ-
enza infection. Baseline-normalized values of CBCs evaluat-
ed daily showed significant differences between shedders and 
nonshedders for lymphocyte, monocyte, and neutrophil counts 
(Supplemental Figure 3, D–K). Consistent with previous reports 
of experimental and community-acquired influenza A infection 
(22, 31, 32), lymphocyte counts in virus shedders decreased from 
baseline, reaching their nadir at day 4, and monocyte counts 
increased, peaking at day 5. Neutrophil counts first increased and 
then decreased relative to baseline.

A custom panel of 42 antibodies (Supplemental Tables 4 and 
5) recognizing cell surface and intracellular targets (33) was used 
to profile immune cell subsets in the blood across 11 time points 
by mass cytometry. We first performed a comparison of mass 

Controlled human infection trials, wherein healthy volunteers 
are challenged with influenza virus, are important settings for the 
study of disease pathogenesis and rapid testing of novel antivirals 
and vaccines (21–23). Such studies also provide an extraordinary 
opportunity to thoroughly characterize the natural history of influ-
enza infection in a highly controlled setting. Here, we used mass 
cytometry to profile peripheral blood immune cell subsets from 35 
healthy individuals challenged with A/California/2009 (H1N1) 
virus. Cell subsets identified by mass cytometry were highly cor-
related with complete blood counts (CBCs), and there were dra-
matic and regularized changes across volunteer subgroups in lym-
phoid and myeloid subsets over the course of the disease.

Unexpectedly, unsupervised machine learning identified cell 
clusters closely related to pDCs, characterized by the expression 
of CD38, that were dramatically increased during infection. In 
vitro blocking experiments revealed the importance of CD38 
for proinflammatory cytokine production in pDCs in response 
to virus. A multivariate approach incorporating plasma cytokine 
levels, innate and adaptive immune cell subset abundance, and 
clinical parameters was used to predict the onset of infection as 
well as susceptibility to A/California/2009 (H1N1) virus. Togeth-
er, this study provides an in-depth analysis of the integrated cellu-
lar responses that orchestrate infection-acquired immunity upon 
influenza challenge and will help guide the development of more 
effective therapeutics.

Results
H1N1 influenza virus challenge in healthy human volunteers. The 
objective of this study was to investigate host immune responses 
in a clinical trial that determined the safety and reactogenicity 
of an A/California/2009 (H1N1) influenza virus challenge strain 
(identifier: NCT04106817). Eligible healthy volunteers were inoc-
ulated using an atomizer with a single intranasal dose of virus and 
subjected to extensive clinical assessment while in confinement 
at a dedicated challenge facility. Before and after inoculation, 
volunteers were monitored for safety and signs and symptoms 
of infection, and multiple analyses of biological specimens were 
performed that included HA antibody titer, virus titer, serology of 
plasma, CBC, and mass cytometry (Figure 1A).

To identify study participants, 427 healthy volunteers between 
18 and 44 years of age were screened (Supplemental Figure 1; sup-
plemental material available online with this article; https://doi.
org/10.1172/JCI137265DS1). Individuals with a hemagglutination 
inhibition (HAI) titer greater than 1:10 were ineligible owing to 
greater potential for preexisting immunity to the challenge strain 
(24). In the sampled population, the median age of individuals with 
HAI titers of ≤1:10 was significantly higher than the median age 
of individuals with HAI titer >1:10 (Figure 1B and Supplemental 
Table 1), similar to correlations of age with baseline and post-vac-
cination HAI titers reported elsewhere (25, 26). Thirty-five volun-
teers were ultimately enrolled and separated into 3 cohorts receiv-
ing escalating doses as indicated in Supplemental Table 2. Overall, 
19 of 35 volunteers (54%) developed virus shedding and reported 
at least 1 symptom consistent with infection. The relatively narrow 
difference in dose between cohorts did not significantly affect the 
proportion of volunteers who developed virus shedding, and when 
subjects were grouped into either virus shedders or nonshedders, 
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plasmablasts increased steadily from day 5 onward (Figure 4A). 
Interestingly, the abundance of a previously undescribed sub-
population of plasmablasts that are positive for phosphorylated 
STAT5 (p-STAT5) rose sharply a week after infection, peaking on 
study day 8 (Figure 4B).

The innate immune response consisting of monocyte, NK 
cell, DC, and granulocyte subsets was next detailed. Unlike B and 
T lymphocytes, total NK cell abundance in circulation follow-
ing infection did not substantially decline (Figure 5A). Notably, 
activated proliferating NK cells (CD38+Ki67+) steadily increased 
in relative abundance after infection until at least day 8 for both 
CD56loCD16+ and CD56+CD16– NK cell subsets (Figure 5, A and 
E). For DC subsets, we observed differing degrees of reduction 
in abundance as a function of time after challenge (Figure 5B). 
Conversely, all monocyte subsets increased strongly in abun-
dance during infection. Classical monocytes (cMCs), intermedi-
ate monocytes (intMCs), and nonclassical monocytes (ncMCs) 
reached peak levels on days 4, 5, and 6, respectively (Figure 5, C 
and F). Among monocyte subsets, the highest-magnitude increase 
in abundance was observed for intMCs. Neutrophils (defined as 
CD66+ cells) had a biphasic response, with abundance increasing 
soon after challenge and declining late during the study (Figure 
5D) in agreement with the CBC measurements (Supplemental 
Figure 3J). Last, basophils (defined as CD123+HLA-DR– cells) 
sharply declined in relative abundance until at least day 8 in virus 
shedders, but not in nonshedders (Figure 5D).

cytometry data with CBC data across 381 paired samples. Strong 
correlations were observed for lymphocyte, monocyte, and neu-
trophil quantifications between the 2 techniques (R = 0.92–0.96, 
P < 0.001) (Supplemental Figure 3, L–N). Therefore, mass cytom-
etry performed as an ideal tool for in-depth exploration of the 
differences in cellular immune response dynamics between virus 
shedders and nonshedders.

Mass cytometry characterizes innate and adaptive immune 
responses during H1N1 infection. Changes in over 50 innate and 
adaptive immune cell populations following virus challenge were 
identified simultaneously in each peripheral blood sample using 
supervised gating (Figure 2 and Supplemental Figure 5). Relative 
abundances of total CD4+ and total CD8+ T cells sharply declined 
following infection, reaching a nadir on day 4 (Figure 3, A and B). 
Similar changes were observed for naive (CD45RA+) and memory 
(CD45RA–) subsets. In contrast, for both CD4+ and CD8+ subsets, 
activated proliferating T cells (CD38+Ki67+) increased in relative 
abundance to a maximum on day 8 (Figure 3, A–C). Among these 
activated proliferating CD4+ and CD8+ T cells, memory subsets 
had considerably larger increases in abundance by day 8 com-
pared with their naive counterparts (Figure 3, A and B).

B cell subsets were defined as total B cells, naive B cells, and 
memory B cells. Memory B cells were further divided into sub-
sets with and without class switching (CSM and NCSM). Like T 
cells, most B cell subsets declined after infection, reaching nadirs 
on day 5 or 6 (Figure 4A). In contrast, the relative abundance of 

Figure 2. Simplified gating strategy used to define major immune cell subsets. Fixed whole blood was stained with a 42-marker metal-conjugated 
antibody panel and analyzed by mass cytometry. Simplified gating strategy used to define major immune cell subsets is shown for a single representative 
sample (for complete gating strategy see Supplemental Figure 5).
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otherwise have been missed by manual gating, we performed Scaf-
fold analysis (34). Scaffold was chosen because it combines unsu-
pervised clustering of cells (CLARA algorithm [ref. 35]) with ready 
identification of clusters through comparison with known cellular 
landmarks and is suitable for combined analysis of a large number of 
samples. Mass cytometry data from all 381 samples (35 volunteers, 11 
time points) were pooled and then grouped based on the similarity of 
surface marker expression into 200 clusters. Landmark nodes defin-

Thus, data from simultaneous examination of abundance and 
activation status of innate and adaptive immune cell subsets by 
mass cytometry not only agreed with clinical blood analysis but 
also provided more granular detail on the coordinated dynamics 
of the immune system during influenza A infection than has pre-
viously been reported.

Unsupervised clustering identifies cell dynamics during influenza 
infection. To highlight changes in immune populations that might 

Figure 3. Kinetics of T cell subsets during H1N1 infection. (A) Relative abundances of total (left) and activated (CD38+Ki67+, right) CD4+ T cells, naive CD4+  
T cells (CD45RA+), and memory CD4+ T cells (CD45RA–). (B) Relative abundances of total (left) and activated (CD38+Ki67+, right) CD8+ T cells, naive CD8+ T cells 
(CD45RA+CD27+), and memory CD8+ T cells (CD45RA–CD27+). (C) Representative biaxial plots showing the extent of CD38 and Ki67 expression on CD4+ and CD8+  
T cells at days 1, 4, and 8 for a representative virus shedder. In B and C, values plotted are relative abundance (percentage of CD66– cells normalized to baseline [aver-
age of day –1, 1]) (mean ± SEM); filled squares and solid lines indicate virus shedders, and open squares and dashed lines indicate virus nonshedders. (A and B)  
n = 35 volunteers. Bonferroni’s adjusted P value of the time-shedding interaction term. For plots of additional gated cell populations, see Supplemental Figure 6.
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ing major immune cell populations (CD4+ and CD8+ T cells, B cells, 
NK cells, myeloid and plasmacytoid DCs, cMCs, ncMCs, basophils, 
and CD66+ cells) were derived by manual gating of a representative 
sample. The 200 clusters were arranged in 2-dimensional space in 
relation to the landmarks, with distances proportional to the degree 
of surface marker similarity to other clusters and landmark nodes 
(Figure 6). As with the manually gated data, relative abundance 
kinetics for cell clusters were determined (Supplemental Table 6). 
To create a single visual representation of the entire data set, the 
infection-associated changes in the relative abundance of each clus-
ter on study days 2–8 were converted into a color scale and displayed 
sequentially as wedges of nodes in clockwise orientation (Figure 6). 
This Scaffold map accurately reflects the global dynamics seen in 
CBCs and manually gated data, namely decreases from preinfection 
levels in relative abundances of T and B cell subsets and increases 
in monocyte subsets (Figure 6). Importantly, this map also allows 
direct visualization of specific clusters that do not follow bulk trends. 
Among 37 clusters that differed significantly, 7 clusters of interest 
with the lowest P values from each map region were chosen for fur-
ther investigation (Figure 7A and Supplemental Table 6).

The identity of cell populations within each cluster of interest 
was determined by examination of median marker expression (Sup-
plemental Figure 7). Clusters I, II, III, and IV had marker expression 
and dynamics like those seen in manual gates for activated mem-
ory CD4+ T cells, non–class-switched memory B cells, activated 
NK cells, and ncMCs, respectively (Figure 7B). Although the mass 
cytometry panel used in this study was not designed to deeply inter-
rogate granulocytes (as identified here by CD66 expression), 15 of 37 
clusters with significant differences between shedders and nonshed-
ders were located near the CD66+ landmark. Of the 200 clusters, 

cluster V had the largest significant difference between shedders and 
nonshedders, a differential that peaked on day 6 (Figure 7B). Cells in 
this cluster express high levels of CD66 and CD16 and low levels of 
CD11b and CD11c, possibly reflecting the dynamics of a large popu-
lation of immature neutrophils produced from emergency granulo-
poiesis (refs. 36, 37, and Supplemental Figure 7).

Clusters VI and VII also differed considerably between shed-
ders and nonshedders. These clusters are located next to each 
other on the Scaffold map, indicating that they had similar surface 
marker expression yet had opposite cell abundance kinetics fol-
lowing infection (Figure 7B). This suggests that cluster VI, which 
drops in abundance during infection, might represent a precursor 
cell population that gives rise to cluster VII. In terms of marker 
expression, both clusters aligned closely with the pDC landmark 
but differed substantially in their expression of CD38 (Figure 7C). 
The abundance of cells in cluster VII, which has higher CD38 
expression than cluster VI, increased sharply during infection, 
suggesting that elevated CD38 may play a role in pDCs during 
influenza infection, warranting further investigation.

CD38 is a critical regulator of pDC function in response to influ-
enza virus. CD38 is a multifunctional protein with both ectoen-
zymatic activity and adhesion properties and is associated with 
immune cell activation (38). Based on the Scaffold analysis above, 
we examined CD38 expression on manually gated pDCs. In virus 
shedders but not nonshedders, median expression of CD38 on 
pDCs rose sharply by day 3 after inoculation and remained ele-
vated through at least study day 8 (Figure 8, A and B), confirm-
ing findings from unsupervised clustering. CD38 levels were also 
upregulated in other cell populations (Supplemental Figure 8), 
consistent with prior reports (38–40).

Figure 4. Kinetics of B cell subsets during H1N1 infection. (A) Relative abundance of total B cells, non–class-switched memory (NCSM) B cells (CD27+IgM+), 
naive B cells (CD27–IgM+), and plasmablasts (CD27+IgM–CD38+). (B) Relative abundance of p-STAT5+ plasmablasts (top) and representative histogram of 
p-STAT5 expression on plasmablasts at days 1 and 8 for a representative virus shedder (bottom). In A and B, values plotted are relative abundance (per-
centage of CD66– cells normalized to baseline [average of day –1, 1]) (mean ± SEM); filled squares and solid lines indicate virus shedders, and open squares 
and dashed lines indicate virus nonshedders. (A and B) n = 35 volunteers. Bonferroni’s adjusted P value of the time-shedding interaction term. For plots of 
additional gated cell populations, see Supplemental Figure 6.
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pDCs are important early responders to viral pathogens; 
these cells initiate and orchestrate innate and adaptive immune 
responses by sensing foreign nucleic acids and producing type I 
interferons (41). The results raise the question of whether CD38 

is involved in the response of pDCs to foreign nucleic acids during 
influenza exposure. Therefore, we first measured CD38 levels on 
pDCs in healthy donor PBMCs in response to agonists to Toll-like 
receptor 7 (TLR7), TLR8, and TLR9 (for gating and antibody pan-

Figure 5. Kinetics of innate immune cell subsets during H1N1 infection. (A) Relative abundances of total (first and third panels) and activated (CD38+ 

Ki67+, second and fourth panels) populations of CD56+CD16– NK cells and CD56loCD16+ NK cells. (B) Relative abundances of pDCs, CD1c+ myeloid DCs (mDCs), 
and BDCA3+ mDCs. (C) Relative abundances of classical monocytes (cMCs; CD14+CD16–), intermediate monocytes (intMCs; CD14+CD16+), and nonclassical 
monocytes (ncMCs; CD14–CD16+). (D) Relative abundances of CD66+ cells and CD123+HLA-DR– cells. (E and F) Biaxial plots of CD38 and Ki67 expression on 
CD56loCD16+ NK cells (E) and CD14 and CD16 expression on monocytes (F) on days 1–8 and 29. Plots for 1 representative virus shedder are shown. In B–E, 
values plotted are relative abundance (percentage of CD66– cells normalized to baseline [average of day –1, 1]) (mean ± SEM); data for virus shedders are 
indicated by filled squares and solid lines, and data for nonshedders are indicated with open squares and dashed lines. (A–F) n = 35 volunteers. Bonfer-
roni’s adjusted P value of the time-shedding interaction term. For plots of additional gated cell populations, see Supplemental Figure 6.
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key determinant for pDC functional activation to influenza 
(Figure 8, G–K). Given that CD38 expression is upregulated 
on pDCs in response to influenza infection in vivo, this pro-
cess may trigger the production of proinflammatory cyto-
kines that drive symptomology and host immune responses.

Predictive modeling of H1N1 virus shedding by machine 
learning. In line with other influenza challenge studies (21, 
22), 16 of 35 volunteers (46%) did not shed virus after chal-
lenge (Supplemental Table 2). This provided an opportunity 
to investigate factors other than HAI or HA antibodies in the 
blood that are relevant to protection. We therefore used our 
data set to computationally define an immune correlate of 
protection that could predict whether an individual would 
go on to become a viral shedder versus a nonshedder.

We first developed a bootstrapping-based random forest 
(43) classifier to diagnose viral shedding after challenge. We 
used this approach rather than a more traditional cross-val-
idation to reduce variance in the reported results given the 
relatively small sample size (44–47). To test the importance of 
different types of data collected in this study (excluding symp-
tomology or viral titer) for accurate diagnosis of infection, 4 
individual random forest models were generated using 4 data 
sets: cytokine/chemokine data, CBC counts, the relative abun-
dance of immune cell populations, and cellular activation and 
proliferation marker expression (the latter 2 sets determined 
by mass cytometry) (Supplemental Table 8). Individual classi-
fier models based on each data set were trained and tested iter-
atively for their ability to distinguish virus shedders from non-
shedders. After training and testing of each data set classifier 
model independently, models were stacked to create a single 
combined classifier for each day (Figure 9A). The performance 
of both individual and combined classifiers was assessed at 
each day of the post-challenge confinement phase by calcu-
lation of the area under the receiver operating characteristic 
curve (AUC) and performance of a Wilcoxon’s signed-rank 
test between the actual and the predicted data (Figure 9B). The 
ability to accurately classify shedders versus nonshedders was 
greatest on study day 6 (P < 0.001), when the stacked classifier 
outperformed all individual models (Figure 9, C–E). Using the 
combined classifier on day 6, the AUC indicates that the prob-
ability that a randomly chosen subject is correctly classified as 
a virus shedder or nonshedder is 0.90 (Figure 9E). To address 
the potential for lack of robustness in tree-based analysis in 
high-dimensional data sets (48), we implemented a rigorous 
100-iteration cross-validation strategy. The performance of 
the classification model, measured by the AUC, stabilized after 

approximately 50 iterations with only minor changes resulting from 
random subsampling thereafter (Supplemental Figure 10A).

Next, using a similar approach, a bootstrapping-based random 
forest predictive model was devised to predict susceptibility to virus 
shedding before challenge. This was accomplished using distinct 
training and test groups and a subset of the features from the 4 data 
sets described above that were important for classifying virus shed-
ding after challenge (Figure 9F). The resulting model was able to 
predict whether a volunteer was likely to later develop virus shedding 
using data from the prechallenge period (P < 0.01) with a probability 
of 0.87 (Figure 9, G and H). Like above, a 100-iteration cross-vali-

el, see Supplemental Figure 9 and Supplemental Table 7). Levels of 
CD38 were significantly higher in response to TLR agonists (Fig-
ure 8, C and D). Next, we examined CD38 regulation in response 
to the influenza challenge strain used in this study by incubating 
PBMCs in the presence or absence of the heat-inactivated A/Cal-
ifornia/2009 (H1N1) virus. As with the effect of TLR agonists, 
stimulation with virus resulted in a considerable CD38 increase 
on pDCs (Figure 8, E and F). Blocking CD38 using an antagonistic 
mAb (clone AT-1) (42) significantly inhibited the H1N1-induced 
production of intracellular TNF-α and IFN-α in pDCs and secre-
tion of IFN-α into culture supernatants, indicating that CD38 is a 

Figure 6. Time-based Scaffold analysis of volunteer H1N1 challenge. Pooled cells 
from all volunteers and all time points (381 mass cytometry samples) were binned 
into 1 of 200 nonoverlapping clusters based on the similarity of their expression 
across all surface markers. Clusters are displayed as nodes of a force-directed Scaf-
fold graph with the length of edges inversely proportional to the similarity of clus-
ters to each other and to landmark nodes defined by manual gating (Supplemental 
Figure 5). The colored wedges in cluster nodes indicate the degree of increase (red) 
or decrease (blue) in the mean relative abundance of a given cell cluster for virus 
shedders on study days 2–8. n = 35 volunteers.
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ates IP-10 with influenza infection (49, 50), and CD38 as a compo-
nent of a multicohort gene metasignature for influenza infection 
symptomatology and vaccine response (19). The success of this 
approach suggests the existence of cellular and humoral correlates 
of protection and infection beyond those currently exploited in the 
clinic, warranting further investigation in future studies.

Discussion
Here we characterized host responses to influenza virus infection 
in a controlled challenge study in human volunteers. H1N1 chal-

dation of the performance of the predictor, measured by the AUC, 
stabilized after approximately 70 iterations with only minor changes 
resulting from random subsampling thereafter (Supplemental Fig-
ure 10C). For additional details on the tuning of the classifier and 
predictor model and parameter selection, see Methods.

Among the top features that synergistically contributed to 
powering the classification and prediction models (Supplemental 
Table 9) were plasma levels of IP-10 and abundances of CD38+ 
pDCs, CD38+ CSM B cells, and monocytes, features already exam-
ined in detail above. This aligns with prior literature that associ-

Figure 7. Kinetics of Scaffold cell clusters during H1N1 infection. (A) Nodes colored black on the Scaffold graph (see Figure 6) indicate clusters with 
significant differential abundance between shedders and nonshedders (P < 0.05, Bonferroni’s adjusted P value of the time-shedding interaction term). 
The locations of the 7 Scaffold clusters selected for further analyses are indicated by Roman numerals. (B) Line plots showing abundances (percentage of 
total clustered cells) (mean ± SEM) normalized to baseline (average of day –1, 1) in Scaffold clusters indicated in A. Data for virus shedders are indicated 
with filled squares and solid lines, and data for nonshedders are indicated with open squares and dashed lines. (C) Box plots showing expression levels of 
indicated cell surface markers in Scaffold clusters VI and VII relative to manually gated myeloid and plasmacytoid DC landmarks. Note differential expres-
sion of CD38. (A–C) n = 35 volunteers. Bonferroni’s adjusted P value of the time-shedding interaction term. For additional box plots showing all markers for 
Scaffold clusters I–VII, see Supplemental Figure 7.
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et al. (11), we observed in virus shedders that total activated and 
proliferating CD4+ and CD8+ T cells steadily increased until at least 
study day 8 and returned to baseline by day 29. The magnitude of 
the changes observed was larger for memory than for naive T cells.

In virus shedders, abundances of naive and non–class-switched 
memory B cells declined after infection, and remained depressed 
until at least day 8, while plasmablasts increased over the same peri-
od. Interestingly, a population of p-STAT5+ plasmablasts emerged 7 
days after challenge. STAT3 and STAT5 phosphorylation in B cells can 
be activated by cytokines, including IL-2, IL-4, IL-7, and IL-21, which 
support B cell differentiation (53, 54). In previous in vitro studies, 
STAT3-dependent BLIMP-1 expression was associated with plasmab-
last differentiation, whereas STAT5-dependent BCL-6 induction 

lenge resulted in virus shedding at high copy numbers, with an 
attack rate and symptomology similar to those in historical chal-
lenge studies (21, 22). Preexisting ELISA titers for full-length HA 
protein were significantly higher in nonshedders compared with 
shedders, while there was no difference in HA “stalk-only” titers 
between groups. This is consistent with recent reports of higher 
effectiveness of HA head-targeted antibodies compared with HA 
stalk–targeted antibodies (51, 52).

Prior studies of experimental and community-acquired human 
influenza A reported decreases in circulating bulk lymphocytes with 
concomitant increases in bulk monocytes (22, 31, 32). Our study 
confirms and greatly extends the findings of these previous studies, 
adding increased granularity and depth. Consistent with Wilkinson 

Figure 8. Analysis of the role of CD38 in pDC activation. (A) Median CD38 values on manually gated pDCs analyzed by mass cytometry. Baseline-normalized 
(average of day –1,1) values (mean ± SEM) are plotted for virus shedders (filled squares and solid lines) and nonshedders (open squares and dashed lines). (B) 
Histograms of CD38 expression on pDCs at days 1, 3, 5, and 8 for a representative virus shedder. (C and D) PBMCs from healthy donors were cultured for 24 hours 
in the presence or absence of the indicated TLR agonist and analyzed by flow cytometry. (C) Representative histograms for CD38 expression on pDCs (see pDC 
gating strategy in Supplemental Figure 9). (D) CD38 MFI values from experiments with cells pooled from 4–11 donors in 2–7 independent experiments. (E–K) 
PBMCs were cultured for 24 hours in the presence (H1N1, blue) or absence (No stim., orange) of heat-inactivated H1N1 virus and, where indicated, in the presence 
of anti-CD38 blocking antibody or isotype control (Isotype). Flow cytometry data from PBMCs from 3 donors in 2 independent experiments are shown. (E) Rep-
resentative histograms of CD38 expression on pDCs. (F) Quantification of CD38 MFI on pDCs. (G) Representative biaxial plot showing frequency of TNF-α+ pDCs. 
(H) Percentage of TNF-α+ pDCs. (I) Representative biaxial plots showing frequency of IFN-α+ pDCs. (J) Percentage of IFN-α+ pDCs. (K) Soluble IFN-α measured in 
supernatants of PBMC cultures. Bar plots in D, F, H, J, and K show mean ± SEM. Welch’s t test (D, F, and H); Wilcoxon’s signed-rank test (J and K).
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intMCs, consistent with a prior report of severe pandemic H1N1 
infection (15). IntMCs and ncMCs are also a known source of 
IP-10 (58); in our study, the changes in plasma levels of IP-10 had 
similar kinetics to those of these subsets.

We observed a biphasic curve for neutrophil kinetics, a sharp 
decline in CD123+HLA-DR– basophils, and significant differences 
in CD66+ Scaffold clusters. These data point toward possible func-
tions for granulocyte subsets in influenza A infection that warrant 
further investigation.

promoted memory B cell formation (55, 56). Plasmablasts with sus-
tained high levels of STAT5 phosphorylation had not been previously 
observed during infection in vivo. The role(s) played during influenza 
infection by these subpopulations of plasmablasts expressing high 
and low levels of p-STAT5 merits investigation in future studies.

Monocyte subsets increased dramatically after infection, 
peaking at days 4 (cMCs), 5 (intMCs), and 6 (ncMCs), consistent 
with the presumed stepwise differentiation trajectory of these 
subsets (57). The largest magnitude of elevations was seen for 

Figure 9. Machine learning–based classification and prediction of H1N1 virus shedding status. (A) Schematic of models used to classify virus shedding 
after challenge. Four models were generated from 4 data sets: cytokines/chemokines; CBC; cell abundance; and cell activation and proliferation (Supple-
mental Table 8). For each data set, the model was iteratively trained and tested on 50% held-out data 100 times. The performance for each individual model 
was the median value from 100 iterations. For the stacked model, individual models were combined. (B) Heatmap of P values for classification of virus 
shedding status on days 2–8. (C) Correlation network displays the relationship between features used in the combined model. Node sizes are proportional to 
the univariate correlation between a given feature and virus shedding. (D) The P values for each model on the day with the best overall classification power 
(day 6). (E) Receiver operating characteristic (ROC) curve evaluating the performance of the combined classification model on day 6. (F) Schematic of model 
used to predict virus shedding before challenge. The 4 data sets from A were used to generate a predictive model that was trained and tested iteratively 
on 50% held-out data 100 times. In contrast to A, only the top features associated with classification of virus shedding on day 6 from each data set were 
used to train models on day 1 data. Models were subsequently evaluated on the excluded day 1 test set. The performance for each individual model was the 
median value from 100 iterations. For the final model, individual models were combined. (G) The P values for each model on day 1. (H) ROC curve evaluating 
the performance of the combined predictive model on data collected on day 1. Wilcoxon’s signed-rank test (A–H). n = 35 volunteers.
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serve as a framework on which to evaluate the impact of investiga-
tional influenza therapeutics on host immune responses in future 
human challenge studies. This work may also provide knowledge 
to guide the design of next-generation clinical tools for influenza 
diagnosis and susceptibility prediction.

Methods

Clinical evaluation
Vital signs including oral temperature, pulse rate, and systolic and 
diastolic blood pressure were collected 4 times daily. Mean daily val-
ues were calculated for all values except oral temperature, which was 
reported as maximum daily value. Vital signs are reported in figures nor-
malized to each individual’s baseline values (day –1, 1). Symptoms were 
scored twice daily by participants using a symptom scorecard as absent 
(0), mild (1), moderate (2), or severe (3) for 17 symptoms: abdominal 
pain, breathing difficulty, cough, diarrhea, earache, facial or eye pain/
tenderness, fatigue, hot/feverish/chills/rigor, headache, hoarseness, 
musculoskeletal ache, nasal stuffiness/congestion, nausea/vomiting, 
runny nose, sneezing, sore throat, and wheezy chest. Symptom scores 
were summed across all categories and reported as the mean of 2 daily 
scorecards. A targeted physical exam was also conducted twice daily by 
a physician investigator to evaluate nasal discharge, otitis, pharyngitis, 
sinus tenderness, new wheezes and crackles, percussion, and abdom-
inal tenderness. Numerical scores were summed across all categories 
and reported as the mean of 2 daily exams.

Virus challenge
The challenge virus strain, A/California/2009 (H1N1), was isolated 
from a 3-year-old child in 2009 and manufactured under good manu-
facturing practices as previously described (65). This strain has report-
ed greater than 99.4% sequence identity with A/California/04/2009 
(H1N1) in HA and neuraminidase regions (65) and has been used in 
additional challenge studies (65, 66). Volunteers were given a single 
intranasal dose of the challenge virus delivered by a mucosal atomiz-
er while seated in a semirecumbent position. See Supplemental Table 
2 for dosing information. The 50% tissue culture infectious dose 
(TCID50) of the viral stock was determined by standard methods by 
Viroclinics Biosciences Inc.

Phlebotomy
Phlebotomy occurred at consistent times daily throughout the 
confinement phase. Routine CBC and blood chemistry were per-
formed by Consolidated Medical Bio-Analysis Inc. Serum for HAI 
titer and plasma for Luminex assay were isolated on-site and stored 
at –80°C until analysis. For mass cytometry, 750 μL of heparinized 
blood was mixed with 1050 μL of Smart Tube Proteomic Stabilizer, 
incubated for 11 minutes at ambient temperature, then flash-frozen 
on dry ice and stored at –80°C until analysis. Blood processing in 
Smart Tube Proteomic Stabilizer occurred within approximately 10 
minutes of phlebotomy.

Hemagglutination inhibition assay
HAI titer was determined by analysis of serum samples using A/Cal-
ifornia/7/2009 (H1N1) (obtained from the National Institute for Bio-
logical Standards and Control, Ridge, United Kingdom) and turkey 
red blood cells by Focus Diagnostics Inc. as previously described (67).

Prior studies have reported transient declines in circulating 
total NK cells (particularly CD56+ NK cells) during pandemic H1N1 
2009 infection (59); similar declines were observed in virus shed-
ders in our study. Conversely, sizeable increases were observed in 
activated, proliferating CD56+CD16– and CD56loCD16+ NK cell 
subsets. Upregulation of CD38 on NK cells has been reported pre-
viously in individuals with acute influenza infection; expression of 
CD38 by NK cells is linked to cytolytic function and immune syn-
apse formation with infected cells (39).

pDCs are resistant to influenza infection and have a high capac-
ity to activate influenza-specific T cells and drive Th1 polarization 
(14, 41, 60). Their importance was demonstrated in a patient with 
life-threatening influenza who had IRF7 deficiency resulting in poor 
production of type I and III interferons by pDCs (61). Inspection of 
the Scaffold map generated from our data pointed to a sharp upreg-
ulation of CD38 on pDCs in individuals shedding virus. This was 
recapitulated in vitro by exposure of PBMCs from healthy donors to 
TLR agonists or heat-inactivated H1N1, consistent with a report of 
herpes simplex virus–induced CD38 upregulation on cultured pDCs 
(62). Importantly, experiments with CD38-blocking antibodies 
shown here support the conclusion that CD38 is a regulator of type 
I interferon production in pDCs. CD38 is a multifunctional protein 
with both ectoenzymatic activity and adhesion properties mediat-
ed through interaction with CD31 on endothelial cells (38). While 
CD38 is well known for involvement in lymphocyte activation (38), 
a recent report highlights its role in inflammatory cytokine produc-
tion in macrophages and monocytes (40), and similar mechanisms 
may operate in pDCs.

The dramatic response of CD38 upregulation in pDCs may 
be part of an early immune program activated by the presence of 
the virus, causally important to eventual control of viral load in 
an infected individual. Interestingly, a study detailing acute Ebo-
la infection of humans similarly found that CD38 upregulation on 
pDCs was correlated to declining viral load (48), suggesting that 
pDC CD38’s role in viral infections may be broader than just influ-
enza. The relevance of CD38 on pDCs is further underscored by 
a report that the CD38-targeted therapeutic daratumumab (63), 
approved for the treatment of multiple myeloma, depletes circu-
lating pDCs (64). Strategies for the modulation of pDC CD38 may 
warrant investigation as potential therapies for viral infections or 
autoimmune diseases associated with dysregulated overaction of 
pDC IFN-I production.

We applied machine learning approaches to accurately clas-
sify and predict virus shedding based on amalgamated data from 
this study. This adds to knowledge from previous whole-blood 
transcriptomic studies (18–20) that correlates of protection from 
influenza A infection beyond previously described serum antibod-
ies and IFN-γ+CD4+ T cells exist in the blood (11). However, it is 
important to recognize that the modeling approach used here con-
siders all features in a coordinated manner for classification and 
prediction of virus shedding; therefore the performance of indi-
vidual features requires validation in future independent cohorts. 
Furthermore, protection in challenge studies may not completely 
reflect protection from community exposures that could differ in 
strain, particle size of exposure, or dose.

This study provides a detailed view of the landscape of coordi-
nated immune cell dynamics during influenza A infection and can 
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fluorescence intensity. Fluorescence values with corresponding bead 
count lower than 35 were considered unreliable and eliminated from 
further analysis. Data reported are fluorescence intensities normalized 
to each individual’s baseline values (day –1, 1) (70).

Mass cytometry
Whole-blood samples treated with Smart Tube Proteomic Stabilizer 
were thawed, treated to lyse red blood cells, barcoded, and stained 
with a panel of metal-conjugated antibodies (Supplemental Tables 4 
and 5) before analysis using a Fluidigm CyTOF 2 mass cytometer (71). 
A total of 381 samples were processed and analyzed by mass cytometry 
(35 volunteers × 11 time points, minus 4 unavailable samples [volun-
teer 112 day 29, volunteer 112 day 60, volunteer 304 day 29, volunteer 
305 day 60]). Samples were processed in 6 large batches with com-
plete sample sets (samples from all time points) for 11 or 12 volunteers 
thawed simultaneously. Each volunteer sample set was thawed along-
side a control aliquot created from a single blood draw from a healthy 
volunteer for normalization of plate-specific batch effects. After red 
blood cell lysis with 1X Thaw-Lyse buffer (Smart Tube Inc.), cells were 
counted, and 1.1 × 106 cells were manually arranged in a 96-well block. 
Subsequent steps were performed on a previously described robotics 
platform (71). Each sample set along with 1 control sample was barcod-
ed with palladium metal (72) and combined into a single well. Barcod-
ed samples were treated with Fc block (Human TruStain FcX, BioLeg-
end) for 10 minutes before surface antibody staining for 30 minutes in 
cell staining medium (PBS with 0.5% BSA and 0.02% sodium azide). 
After surface staining, cells were permeabilized with ice-cold 100% 
methanol, washed, and stained for 60 minutes with intracellular anti-
bodies in cell staining medium. Following intracellular staining, cells 
were washed and resuspended in an iridium intercalator (Fluidigm) 
solution containing 1.6% paraformaldehyde. Finally, samples were 
washed, resuspended in 1× five-element normalization beads (La, Pr, 
Tb, Tm, Lu) (Fluidigm), and analyzed on a freshly cleaned and tuned 
cytometry by time-of-flight (CyTOF) instrument. Mass cytometry 
data were bead-normalized across all runs and debarcoded as previ-
ously described (73). For normalization of plate-specific batch effects, 
first, all markers from all shared controls were linearly transformed 
using a smoothing spline to match the mean and standard deviation 
of the control in the first plate. Next, the same plate-specific transfor-
mations were applied to all other samples in the respective plates (74).

Scaffold analysis
For Scaffold analysis, FCS files were first created from CD61–CD235– 
gated mass cytometry events. Events were randomly subsampled to 
50,000 events per file, and events from all volunteers and time points 
(~19 million events) were pooled and assigned into 1 of 200 nonoverlap-
ping clusters based on the similarity of surface marker expression using 
the CLARA function in R (35) as part of the Scaffold R package (see Sup-
plemental Table 4 for list of surface markers) (34). Scaffold code can be 
found at https://github.com/nolanlab/scaffold. Gated populations from 
a single representative sample were used to define landmark nodes.

PBMC culture and stimulation
Blood was collected using EDTA-coated tubes (BD Biosciences), 
and cells were processed within 2 hours of blood draw. PBMCs were 
isolated by density gradient centrifugation using Ficoll-Paque PLUS 
(GE Healthcare). Cells were washed with PBS and 2 × 106 cells were 

HA ELISA
ELISAs were performed as described previously (51). In brief, ELI-
SAs were performed on 96-well Immulon 4HBX flat-bottomed 
microtiter plates (Thermo Fisher Scientific) coated with 0.5 μg/
well streptavidin (MilliporeSigma). Biotinylated headless H1 HA 
stalk or biotinylated full-length H1 HA protein (secreted A/Califor-
nia/07/2009 HA) was diluted in biotinylation buffer to 0.25 μg/mL 
and 2 μg/mL, respectively; 50 μL/well was added and incubated for 
1 hour. Each well was subsequently blocked for 1 hour with bioti-
nylation blocking buffer. Each serum sample was serially diluted in 
biotinylation buffer starting at 1:100 dilution, added to the ELISA 
plates, and incubated for 1 hour. As a control, the human HA stalk–
specific mAb CR9114 was serially diluted starting at 0.03 μg/mL to 
verify equal coating between plates and to determine relative serum 
titers. Peroxidase-conjugated goat anti-human IgG (Jackson Immu-
noResearch Laboratories Inc.) was diluted in biotinylation buffer 
at 1:5000, added to each plate, then incubated for 1 hour. Finally, 
KPL SureBlue TMB peroxidase substrate (5120-0077, SeraCare) was 
added to each well for 5 minutes, then the reaction was quenched 
with 250 mM HCl solution. All incubation steps were performed on a 
rocker at room temperature. Plates were washed between each incu-
bation step with PBS-Tween using a BioTek 405 LS microplate wash-
er. Relative titers were determined using a consistent concentration 
of CR9114 mAb for each plate and reported as the corresponding 
inverse of the serum dilution that generated equivalent optical den-
sities. Each type of ELISA was performed twice. Plasmids to produce 
headless H1 HA stalk protein were provided by Adrian McDermott 
and Barney Graham (Vaccine Research Center, NIH), and plasmids 
to produce HA stalk–specific mAb CR9114 were provided by Patrick 
Wilson (University of Chicago, Chicago, Illinois, USA).

Virus shedding analysis
Virus shedding data were obtained from ClincialTrials.gov 
(NCT04106817) with assay details provided by WCCT Global. Assays 
were performed by Matthew Memoli at the National Institute of 
Allergy and Infectious Diseases, NIH, as previously described (68). 
Briefly, nasopharyngeal swabs were collected daily for viral shedding 
assessment using a BD Universal Viral Transport Kit with a 3 mL vial 
containing transport medium and a flocked swab (product 220528, 
Becton Dickinson). Virus shedding was determined by a qRT-PCR 
assay targeting the influenza matrix 1 (M1) RNA gene segment (69). 
An external standard was used to construct a standard curve for copy 
number estimation. Virus shedders were defined as volunteers with at 
least 1 positive qRT-PCR test during the post-challenge period.

Luminex cytokine assay
Circulating cytokines and chemokines were measured in plasma sam-
ples by Eve Technologies using a multiplexed Luminex-based assay 
(Human Cytokine/Chemokine 65-Plex Panel). Targets examined were 
EGF, eotaxin, FGF-2, Flt-3 ligand, fractalkine, G-CSF, GM-CSF, GRO, 
IFN-α2, IFN-γ, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A, IL-18, 
IL-1ra, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IP-10, 
MCP-1, MCP-3, MDC (CCL22), MIP-1α, MIP-1β, PDGF-AA, PDGF-AB/
BB, RANTES, TGF-α, TNF-α, TNF-β, VEGF, sCD40L, eotaxin-2, MCP-
2, BCA-1, MCP-4, I-309, IL-16, TARC, 6CKine, eotaxin-3, LIF, TPO, 
SCF, TSLP, IL-33, IL-20, IL-21, IL-23, TRAIL, CTACK, SDF-1a+B, ENA-
78, MIP-1d, and IL-28A. Luminex data are reported as bead count and 
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Correlation analysis. Correlation analysis was performed using the 
nonparametric Spearman’s correlation test, and the Spearman ρ value 
of correlation is reported.

Receiver operating characteristic. The receiver operating character-
istic curve was drawn for each category of the population. True-pos-
itive and false-positive rates were computed as previously described 
(75). The area under the receiver operating characteristic curve was 
used to evaluate the performance of the predictor and classifier.

Classification model. For each day a matrix X of all features from a 
given data set and a vector of viral shedding, Y, were used to generate a 
decision tree–based random forest classifier. A random forest classifier 
consists of a collection of tree-structured classifiers {t(X, Θb), b = 1, …, 
B}, where {Θb} are independent identically distributed random vectors, 
and each tree casts a unit vote for the most popular class at input X (43). 
Breiman’s implementation of the random forest (43, 76) was used in 
this study because it is a well-established method that has had excel-
lent predictive power in prior studies with a similarly large number of 
features relative to sample n (77, 78).

For each day, 4 individual models were generated based on 
4 data sets: cytokine and chemokine data; CBC counts; relative 
abundance of immune cell populations (determined by mass 
cytometry); and cellular activation (CD38) and proliferation (Ki67) 
marker expression (determined by mass cytometry) (Supplemental 
Table 8). These 4 models were trained and tested for their ability 
to classify viral shedding. For the final multivariate modeling step, 
individual models were combined as previously described (79, 80). 
The median values across all 4 data sets were reported as the final 
classification (81).

Predictive model. For the predictive model, data were first split 
into separate training and test sets. Using training data only, a ran-
dom forest model was generated using a matrix X of all features 
from day 6 for each data set. Features with importance greater than 
0.09 (Supplemental Table 9) were selected to create a reduced fea-
ture set that was used to retrain the model on day 1 training data 
using a gradient-boosted decision tree system (82). The model was 
then tested on the excluded test set data from day 1. This step was 
repeated 100 times.

The performance for the predictor was the median value from 
100 repetitions. The results from the analysis of single data sets were 
then combined in a final multivariate modeling step, where the medi-
an value across all 4 data sets was reported as the final prediction.

Robustness of classification and prediction models. For both classi-
fication and prediction models, the performance is reported as the 
median value from 100 repetitions. Bootstrapping was implemented 
by splitting of the data set into 2 equal parts: a training set and a testing 
set. Models were trained on the training set and tested using the test 
set. This step was repeated 100 times. To ensure that 100 bootstrap-
ping repetitions was a suitable number, a range of 2 to 200 iterations 
were examined, finding the performance of the model, indicated by 
AUC, to stabilize, and variance to decline, after approximately 50 iter-
ations for the classifier (Supplemental Figure 10A), or approximately 
70 iterations for the predictor (Supplemental Figure 10C). Further-
more, to explore the potential impact of different train-test splits of the 
data set on model performance, 2:1, 4:1, and 9:1 train-test splits were 
tested, resulting in classifier AUCs of 0.92, 0.92, and 0.91, respective-
ly (Supplemental Figure 10B), and predictor AUCs of 0.77, 0.78, and 
0.80, respectively. These results are comparable to the AUC of 0.90 

cultured in 500 μL complete RPMI (Corning) containing 10% FBS 
(GIBCO), 2 mM l-glutamine (Corning), 25 mM HEPES (Corning), 1 
mM sodium pyruvate (Corning), 100 μM nonessential amino acids 
(Corning), and 55 μM 2-mercaptoethanol (GIBCO) plus 10 ng/mL 
recombinant human IL-3 (R&D Systems) for 24 hours at 37°C in 5 
mL polypropylene tubes. Cells were stimulated with 5 μg/mL imiqui-
mod (Invivogen), resiquimod (Invivogen), CpG-A (2216, Invivogen), 
or CpG-B (2006-G5, Invivogen) or with heat-inactivated challenge 
strain at MOI of 2. Virus was heat-inactivated for 30 minutes at 56°C. 
For intracellular cytokine staining, Brefeldin A (10 μg/mL) was added 
10 hours after stimulation with virus. Where indicated, PBMCs were 
preincubated with anti-CD38 (5 μg per 1 × 106 cells) clone B307 (AT-1) 
(Abcam) to block CD38 (42), or Rb isotype control (R&D Systems) for 
30 minutes at 37°C before addition of stimulus. After 24 hours, super-
natants were isolated and stored at –80°C until analysis. For IFN-α 
ELISA, culture supernatants were analyzed in triplicate according to 
the manufacturer’s instructions using a Human IFN Alpha Multi-Sub-
type ELISA Kit (TCM [tissue culture media]) (PBL Assay Science).

Flow cytometry
Before staining, cells were incubated with human IgG (Invitrogen) for 
10 minutes at room temperature to block nonspecific binding. Cells 
were stained for surface markers for 20 minutes at room temperature. 
Cells were fixed and permeabilized for 20 minutes at room tempera-
ture using BD Cytofix/Cytoperm (BD Biosciences), then stained for 
IFN-α and TNF-α for 30 minutes at room temperature in permeabili-
zation buffer. Data were acquired on a 5-laser LSRFortessa X20 (BD 
Biosciences). pDCs were gated as singlet, live Lin– (CD3–CD19–CD20–

CD335–CD66b–CD14–CD16–CD11c–) HLA-DR+CD123+BDCA4+.

Statistics
Longitudinal models. To investigate the differences between shed-
ders and nonshedders for a given response variable, a mixed-effect 
model was used. For baseline normalized data, values were first 
log2(y+1)-transformed to unskew the data, followed by baseline nor-
malization using the average value from the 2 baseline days (days 
–1, 1). A longitudinal linear random intercept model was developed 
through the day of the maximum difference between shedders and 
nonshedders. Shedding and time were covariates, and a subject-spe-
cific random intercept term, uj, was used to address correlation among 
multiple measurements. The P value for the interaction term between 
time and shedding is reported. The longitudinal regression model is 
described as follows: yij = β0 + β1sheddingj × timei + uj, where yij denotes 
the response variable at the ith day for subject j.

P value adjustment. All P values were adjusted for multiple hypoth-
esis correction using Bonferroni’s method. A P value less than 0.05 
was considered significant.

Missing and excluded values. Day 29 samples were not available 
for analysis from volunteer 112. Day 60 samples were not available for 
analysis from volunteers 112, 304, and 305. All available samples from 
the confinement phase (days –1 through 8) were included in the analy-
sis. For the follow-up period only (days 29, 60), samples were excluded 
from analysis for any volunteer who reported new symptoms imme-
diately before a follow-up visit that could be suggestive of unrelated 
community-acquired infections (e.g., sore throat). This included day 
29 samples from volunteers 110, 304, and 306 and day 60 samples 
from volunteers 104, 105, and 202.
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NM, SJ, BG, and ZBH conducted and analyzed mass cytometry 
experiments. ZR, PFG, HC, NA, and SSB designed and completed 
computational modeling and statistical analysis of all data.
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