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Abstract

Transposon-based strategies provide a powerful and unbiased way to study bacterial stress 

response1–8, but these approaches cannot fully capture the complexities of network-based 

behavior. Here, we present a network-based genetic screening approach: the Transcriptional 

Regulator Induced Phenotype (TRIP) screen, which we used to identify previously 

uncharacterized network adaptations of Mycobacterium tuberculosis (Mtb) to the first-line anti-TB 

drug isoniazid (INH). We found regulators that alter INH susceptibility when induced, several of 

which could not be identified by standard gene disruption approaches. We then focused on a 

specific regulator, mce3R, which potentiated INH activity when induced. We compared mce3R-

regulated genes with baseline INH transcriptional responses and implicated the gene ctpD 
(Rv1469) as a putative INH effector. Evaluating a ctpD disruption mutant demonstrated a 

previously unknown role for this gene in INH susceptibility. Integrating TRIP screening with 

network information can uncover sophisticated molecular response programs.
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Deciphering molecular stress response is important to studies of microbes including 

Mycobacterium tuberculosis (Mtb), the causative pathogen of tuberculosis9. Prolonged 

therapy and unfavorable outcomes arise partially because Mtb can persist in otherwise 

inhibitory drug concentrations by means independent of heritable resistance mutations10–12. 

Defining these adaptations can reveal biology, including unexplored drug targets and 

treatment-enhancing strategies. Screens of transposon-mediated gene disruption mutant 

pools1–8 are powerful tools to identify candidate effector genes, but they also pose 

limitations: 1) they cannot identify genes whose upregulation elicits a phenotype, 2) 

essential genes are lost from experiments, and 3) they miss phenotypes from the coordinated 

actions of multiple genes. To address these limitations, we developed the Transcriptional 

Regulator Induced Phenotype (TRIP) screen, which quantifies growth associated with 

individually inducing each Mtb transcription factor (TF). TRIP offers several advantages: 1) 

emergent phenotypes are accessible, since regulons generally include multiple genes 

selected for co-regulation by evolution; 2) revealed phenotypes can be deconstructed with 

the existing baseline regulatory network; 3) TF expression is chemically triggered, enabling 

context-specific interrogation of perturbations; and 4) essential regulators and effector genes 

can be assessed. Thus, TRIP is highly complementary to gene disruption-based screening 

approaches.

TRIP exploits a library of 207 TF-induction (TFI) strains, representing 97% of annotated 

Mtb regulators, each transformed with a plasmid carrying a TF under control of a 

chemically-inducible promoter (Figure 1). Each strain is engineered for conditional 

induction of a single TF and expression of its associated regulon—the set of genes whose 

expression changes when that TF is induced 13–15. ChIP-seq and expression profiling of TFI 

strains under in vitro log-phase conditions revealed a baseline network of transcriptional 

impacts and DNA binding interactions triggered by each TF 13–15.

Here, we pool the TFI library for simultaneous growth measurements (Figure 1). The pool is 

exposed to a stress condition either with or without TF induction. The proportion of each 

TFI strain in the pool is quantified by next-generation sequencing of a DNA segment unique 

to each strain. Sampling the pool over time generates simultaneous abundance curves for 

each TFI strain. The abundance fold change of each strain when induced versus uninduced 

identifies regulons with altered growth or survival.

We first applied TRIP to Mtb log-phase growth in vitro to characterize network 

perturbations that alter baseline fitness. Figure 2A visualizes abundance fold change of each 

TFI strain when induced under these conditions (Table S1 has detailed results and individual 

replicate data). Most TFI strains showed no significant abundance difference upon induction 

(Figure 2B shows an example TFI strain in this category). Twenty-two TFI strains (10.6%; 

below dotted line at −0.5) exhibited growth defects upon TF induction (Figure 2C shows an 

example TFI strain in this category).

Growth-defective strains are enriched in TFs that activate genes associated with starvation 

responses (Table S2). Such strains are also enriched for TFs that repress essential genes (p < 

10−6, hypergeometric test), although two defect-inducing TFIs (Rv3765c and Rv1255c) do 

not repress any essential genes, and 20 TFIs with no discernable growth phenotype do 
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repress essential genes 3. There is no significant correlation between the number of 

repressed essential genes and extent of growth defect incurred by the TFI strain, which could 

potentially arise for several reasons, including synthetic rescues16,17, or the nonlinear 

relationship between expression level and fitness for some essential genes18.

To validate relative abundance differences detected by TRIP, we compared screening results 

with growth of each individual TFI strain over a one-week time course with and without TF 

induction. Of the 22 TFIs with strong growth defects in TRIP, 20 also had strong growth 

defects when cultured individually. Out of 174 other TFs with no TRIP-associated defect, 

only 1 TFI strain elicited greater than 1.5-fold increase in doubling time when TF expression 

was induced in monoculture. Notably, these 174 TFI strains included 23 TFs that we had 

previously characterized to elicit no transcriptional change when induced under log-phase 

growing conditions. These validations indicate that: 1) phenotypes detected by TRIP reflect 

growth observed in monoculture, 2) significant growth defect upon TF induction is 

uncommon and TF-specific, and 3) protein (and TF) overexpression do not convey non-

specific growth defects.

With baseline Mtb network phenotypes established, we applied TRIP to study response to 

the frontline anti-TB agent isoniazid (INH). We exposed TFI pools to an INH dose where 

the bulk population grew suboptimally (19% of untreated, Extended Data 1), enabling 

identification of TFIs with either reduced or improved viability compared to the population 

average from a single experiment. Figure 2D shows the abundance of TFI strains exposed to 

drug when induced relative to uninduced. Strains with significant INH phenotypes partition 

into three groups: A) TFIs conveying growth advantage in INH but no change when 

untreated (6 strains, purple box); B) TFIs conveying growth defect in INH but no change 

when untreated (4 strains, blue box); and C) TFIs conveying growth defect in INH and 

untreated conditions (9 strains; light blue box). Of the 20 TFs that yield INH TRIP 

phenotypes, two were revealed by Tn-seq to alter Mtb fitness significantly during INH 

treatment (Table S2) 19. The regulons of TFs in all three groups were enriched for genes 

reported to alter INH fitness by Tn-seq (Table S3) 19. Notably, two of the four TFs in group 

B solely activate genes when induced (Rv0330c and Rv2282c), so association between 

genes in these regulons and INH fitness could not have been detected by disruption-based 

assays.

The TFI conveying the greatest TRIP advantage in INH is furA (Rv1909c). This TF 

represses expression of katG (Rv1908c), which encodes the catalase-peroxidase that 

converts the INH prodrug into its active form 20,21. Inducing furA is known to restore nearly 

uninhibited growth in INH 14,20,22.

We next investigated regulons representing potential therapeutic targets. The TF conveying 

the greatest INH TRIP defect is mce3R (Rv1963c), a TetR-like regulator. mce3R has been 

linked to the expression of genes that mediate β-oxidation of fatty acids and lipid transport 
23–25 and had no previous connection to INH.

To validate hypersusceptibility, we tested viability of the mce3R induction strain (mce3Rind) 

in monoculture with INH. First, we exposed mce3Rind to INH, with and without TF 
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induction (Figure 2E). We confirmed mce3R induction by qPCR (Extended Data 2), and 

observed a significant, 4-fold additional survival defect by 7 days of INH. By day 14, during 

the Mtb growth rebound phase mediated by INH degradation in the culture media26–28, the 

additional mce3R defect was 21-fold. We suspect that this is because many common katG 
mutations still retain some catalase activity and INH sensitivity29, though we have not 

precluded other possible explanations. We also assayed Mtb ATP levels (BacTiter Glo, 

Promega, Madison, WI) after 7 days with varying INH doses (Figure 2F, Extended Data 3). 

We found that at every non-zero INH concentration tested, mce3R induction resulted in 

significantly lower metabolic viability, demonstrating that mce3R-mediated 

hypersusceptibility is independent of drug dose.

Hypersusceptibility could stem from TFI-mediated countering of the Mtb adaptation to INH. 

To investigate this hypothesis, we compared the mce3R induction regulon from our basal 

transcriptional network with genes previously shown to be differentially expressed when 

H37Rv is exposed to INH14,30,31. ctpD (Rv1469) is one of two genes repressed by mce3R 
(Figure 3A, see Extended Data 4 for full set), and is normally upregulated in response to 

INH in broth culture and under macrophage infection conditions 30,31. After excluding the 

other gene (see Table S4 and Table S5 for details), we hypothesized that ctpD induction 

might be important for temporary Mtb adaptation to INH. If so, depleting ctpD might elicit 

INH hypersusceptiblity independently from mce3R.

To test if ctpD influences INH susceptibility, we obtained a transposon mutant that disrupted 

ctpD (ctpD::Himar1). We compared kill curves for ctpD::Himar1 vs. the parent strain 

CDC1551 when exposed to INH (Figure 3B, Extended Data 5). As predicted, ctpD::Himar1 

survival was reduced relative to CDC1551 following INH (93-fold difference after 7 days, p 

~ 3×10−5, t-test), with no significant growth difference without drug. To independently 

validate this INH hypersusceptibility, we performed a CRISPRi-mediated knockdown of 

ctpD in H37Rv. Without ATc, ctpD expression in the CRISPRi strain is 15% of H37Rv, and 

it exhibits a 95-fold CFU reduction relative to H37Rv at 7 days of INH. With ATc 

supplementation, ctpD expression in the CRISPRi strain is 8% of H37Rv, and it exhibits a 

275-fold CFU reduction relative to H37Rv at 7 days of INH (Extended Data 5, see Methods 

for CRISPRi details). We also found that inducing mce3R expression in the ctpD::Himar1 

strain conveyed greater CFU decrease at 7 days of INH treatment than the ctpD::Himar1 

strain alone (Extended Data 6). This suggests that additional components of the mce3R 
regulon also contribute to INH sensitivity. Transcriptome profiling14 revealed no significant 

expression change in the thioredoxin genes trxA (Rv1470) and trxB1 (Rv1471) upon mce3R 
induction (p > 0.3, t-test), suggesting that polar effects on the genes downstream of ctpD are 

unlikely to contribute significantly to the INH susceptibility phenotype.

The ctpD gene encodes a membrane protein32 annotated as the Mtb paralog of CtpD, a 

member of the metal cation-transporting P1B4-ATPase subgroup, and is essential for Mtb 

survival in the host 2,33,34. CtpD is a high-affinity Fe2+ exporter needed to overcome redox 

stress and adapt to the host 33,35. Given that KatG-mediated catalysis is iron-dependent, Fe2+ 

accumulation from ctpD loss could possibly increase levels of oxy-ferrous KatG, which in 

turn could increase INH activation 36. Consistent with this hypothesis, metabolic profiling of 

the ctpD::Himar1 and mce3Rind strains showed increased intracellular accumulation of INH 
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and activated INH-NAD adduct37 (Figure 3C, Extended Data 7). Notably, mce3R induction 

in ctpD::Himar1 does not convey additional INH-NAD adduct accumulation, suggesting that 

ctpD is a major contributor of mce3R-mediated modulation of INH activation. Alternatively, 

extra free iron in Mtb could promote cell wall changes 19 or increased oxidative stress 38 that 

may enhance INH activity. RNA-seq transcriptome profiling of the ctpD::Himar1 strain 

indicates that katG expression is ~1.7-fold higher and furA expression is ~2.1 fold higher 

than wildtype after 1 day of INH (p < 0.01, t-test). Given the aforementioned link between 

furA and katG 14,20,22, it possible that the ctpD-mediated phenotype is partially mediated by 

katG expression change. Further work is needed to establish the mechanism of CtpD-

mediated intrinsic INH susceptibility, and whether this mechanism extends to other cation 

transmembrane transporters.

TRIP represents a powerful tool to unravel the links between genetic perturbations and their 

phenotypic outcomes under various environmental contexts. Previous TF-centric strategies 

profiled individual TF perturbation strains separately, requiring up to hundreds of cultures to 

capture regulatory fitness in a single condition14,31,39,40. In contrast, TRIP enables 

parallelized fitness quantification across Mtb TFs within a single culture. TRIP can reveal 

associations between genes, networks, and fitness in several ways. First, by targeting 

regulons, TRIP harnesses nature’s levers to modulate responses—tuning gene sets that 

evolved to change coordinately—and uncovers phenotypes that depend on synchronized 

actions of multiple genes. For example, two TFIs that slowed growth under log-phase 

conditions (Rv3765c and Rv1255c) do not repress any essential genes, suggesting that 

epistatic mechanisms may underlie these defects. Second, TRIP samples network states 

distinct from those elicited by TF disruption. For example, mce3R was previously reported 

to regulate the mce3 operon genes based on studies of a deletion mutant 23,24. However, the 

transcriptional impact of inducing mce3R does not include the mce3 operon (Table S2 shows 

full regulon, based on 14), suggesting that mce3R participates in complex regulatory circuits. 

Combining gene disruption studies with TRIP and network analysis could facilitate 

deconstructing these nonlinear effects. Finally, unlike gene disruption assays, TRIP can 

profile upregulation phenotypes, as with the INH hypersusceptibility-inducing TFs Rv0330c 

and Rv2282c, both of which exclusively activate genes.

In this study, we combined TRIP with network analysis to identify genes that altered Mtb 

response to INH. However, TRIP can interrogate network mediators of fitness under any 

condition from which microbes can be recovered, and TRIP requires tracking a substantially 

reduced set of mutants compared to Tn-seq, rendering it technically tractable. By integrating 

with network information, TRIP will lend insights into emergent mechanisms underlying 

condition-specific growth phenotypes in Mtb, and the strategy can be generalized for other 

organisms.

Methods:

Strains and expression vectors.

The individual strains comprising the Mtb Transcription Factor Induction (TFI) Library were 

generated previously 14. Briefly, 207 Mtb DNA binding genes were cloned into a tagged, 

inducible vector that placed the TF under control of a tetracycline-inducible promoter and 
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added a C-terminal FLAG epitope tag 14,41–44. The constructs were then individually 

transformed into Mtb H37Rv using standard methods. Individual TFI strains are available 

from the BEI strain repository at ATCC (45, NR-46512). The TFI library was generated by 

combining equal proportions of each strain into a common pool.

The ctpD transposon strain (ctpD::Himar1) was obtained through BEI Resources, NIAID, 

NIH: Mtb: Strain CDC1551, Transposon Mutant 1738 (MT1515, Rv1469), NR-18218 45. 

The transposon insertion is located at base 671 in the 1974 base-pair long gene 45. To trigger 

mce3R induction in this strain, we transformed the mce3R TFI plasmid into ctpD::Himar1, 

to generate the ctpD::Himar1::mce3Rind strain. As an additional control, we also generated 

an mce3Rind (CDC1551) strain by transforming the mce3R TFI plasmid into the CDC1551 

strain background.

The ctpD CRISPRi strain was constructed according to the method outlined previously in 46. 

Briefly, we used the pJR965 plasmid encoding a tetracyline-inducible dCas9, a tetracycline-

inducible ctpD -specific sgRNA, and kanamycin-selectable marker. We made the ctpD -

specific sgRNA by annealing two complementary oligonucleotides targeting the non-

template strand of the ctpD ORF 3’ of a PAM (protospacer adjacent motif) sequence 

(forward primer sequence: GGGAGTTCAGTTGCGCCACTAGTCCGG; reverse primer 

sequence: AAACCCGGACTAGTGGCGCAACTGAAC). pJR965 was digested with BsmBI 

and ctpD -specific sgRNA was ligated into digested pJR965 using T4 DNA ligase. The 

ligation reaction was transformed into competent Escherichia coli and sgRNA insertions 

were confirmed by Sanger sequencing before the plasmids were transformed into Mtb.

Culture.

Bacteria were cultured at 37°C under aerobic conditions with constant agitation. For the 

experiments involving TFI strains, the strains were cultured in Middlebrook 7H9 with the 

ADC supplement (Difco), 0.05% Tween80, and 50 μg/mL hygromycin B to maintain the 

plasmids.

For the TRIP experiments, growth of the pooled TFI library was monitored by OD600. At an 

OD600 of 0.1, expression of the pooled TFI library was induced with anhydrotetracycline 

(ATc, 100ng/mL), and the cultures were grown for 7 days supplemented with either 3.6μM 

INH in 1% DMSO solution or DMSO as no-drug control. The cultures were sampled at Day 

0 and Day 7 of the experiment for DNA isolation and subsequent sequencing.

For individual TFI strain time course experiments, each strain was cultured under the same 

media conditions as described for the pooled TFI library. When cultures reached OD600 

~0.1, TFI strain induction and drug exposure proceeded as described for the pooled TFI 

library. The individual strain cultures were monitored for up to 14 days, with viability under 

the different drug and induction conditions assayed by plating on Middlebrook 7H10 solid 

media plates and assessing colony forming units using standard methods.

The ctpD::Himar1 strain was cultured in Middlebrook 7H9 with ADC supplement (Difco), 

0.05% Tween80, and 30 μg/mL kanamycin to maintain the transposon insertion. Growth and 

survival of Rv1469 mutant was compared against the parent Mtb CDC1551 strain. When 
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cultures reached an OD600 of 0.1, drug exposure proceeded as described for the pooled TFI 

library. The individual strain cultures were monitored for up to 14 days, with viability under 

the different drug and induction conditions assayed by plating on Middlebrook 7H10 solid 

media plates and assessing colony forming units using standard methods.

To prepare for metabolomic profiling, Mtb strains were cultured at 37°C in Middlebrook 

7H9 broth (BD) containing 0.2% glycerol, 0.04% Tyloxapol, 0.85g/L NaCl, 2 g/L D-

glucose, and 5 g/L Fraction V BSA (Roche).

Dose-dependent viability assay.

Strains were grown to log phase (OD600 ~0.3), diluted to a final OD600 of 0.005, and 

dispensed into 96-well flat-bottom plates (Corning, Acton, MA) at a final volume of 200μL, 

containing 1% DMSO and varying concentrations of INH in the different wells. On each 

plate, control wells for each of the strains studied were included, containing no drug and 1% 

DMSO vehicle, to measure viability in the absence of INH exposure. Plates were incubated 

at 37°C for 7 days. Cellular viability was assayed on Day 7 by adding 20μL of culture from 

each well to 20μL of BacTiter-Glo Microbial Cell Viability Assay Reagent (Promega, 

Madison, WI), incubating at room temperature protected from direct light for 20 minutes, 

and reading luminescence intensity using a FluoStar Omega plate reader (BMG Lab Tech, 

Cary, NC).

DNA isolation and sequencing.

Cell pellets collected from each sample were resuspended in TE buffer, pH 8.0, transferred 

to a tube containing Lysing Matrix B (QBiogene, Inc.), and vigorously shaken three times at 

6m/s for 30 seconds per cycle in a Bead Ruptor 24 homogenizer (Omni International, 

Kennesaw, GA), with a 30-second pause between each cycle. The mixture was centrifuged at 

maximum speed for one minute, and DNA was extracted from the supernatant using the 

MagJet Genomic DNA Kit (Thermo Fisher), according to the manufacturer’s instructions for 

manual genomic DNA purification.

PCR pre-amplification of DNA barcodes unique to each TFI strain was performed. The 

products of this reaction were prepared for Illumina sequencing using the NEBNext Ultra 

DNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA) according to 

manufacturer’s instructions, and using the AMPure XP reagent (Agencourt Bioscience 

Corporation, Beverly, MA) for size selection and cleanup of adaptor-ligated DNA. We used 

the NEBNext Multiplex Oligos for Illumina (Dual Index Primers Set 1) to barcode the DNA 

libraries associated with each replicate and enable multiplexing of 96 libraries per 

sequencing run. The prepared libraries were quantified using the Kapa qPCR quantification 

kit, and were sequenced at the University of Washington Northwest Genomics Center with 

the Illumina NextSeq 500 Mid Output v2 Kit (Illumina Inc, San Diego, CA). The 

sequencing generated an average of 1.5 million 75 base-pair paired-end raw read counts per 

library.
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Sequencing read alignment and TFI strain abundance deconvolution.

Read alignment was carried out using a custom processing pipeline that harnesses the 

Bowtie 2 utilities 47,48, which is available at A custom Bowtie 2 target index was constructed 

from: the CDS sequences of all H37Rv genes; the inducible TFI anchor plasmid sequence; 

and the complete sequence of the empty plasmid as a negative control. The two mate-pair 

FASTQ datasets for each sample were separately mapped as unpaired reads using Bowtie 2’s 

local alignment mode. After both mate end datasets were aligned separately, the alignment 

results were combined to give a pair of gene/plasmid alignments for each raw read. Only raw 

read pairs having one alignment to the anchor plasmid and the other to a gene with an 

existing “Rv” code were kept as valid reads. Read pairs that mapped to “Rv” code genes on 

both ends, or pairs that failed to align were discarded. On average, each sample had 99.9% 

valid anchor/gene reads, which is comparable to typical RNA-seq and WGS alignment 

results. Libraries that generated fewer than 10,000 valid read pairs were excluded from 

further analysis. Valid reads were then tallied for all “Rv” code genes reported as raw 

abundance measures. Read counts for each TFI were then normalized as log2 reads per 

million (RPM) values. Higher RPM values indicated that the corresponding TFI strain had 

greater relative abundance in the pooled culture. The average log2 RPM values across TFIs 

were 11.7±3.2. TFIs with low abundance levels on day 0 of each experiment (log2 RPM < 5) 

were excluded from subsequent analysis (10 TFI strains, 4.8%).

We performed each TRIP experiment on two independent occasions, and included four 

biological replicates per condition on each occasion. To assess the effect of induction on TFI 

strain relative abundance, the log2 fold-change RPM values of each replicate were 

calculated for the TFI-induced condition relative to un-induced. These values were averaged 

and further normalized by the number of doublings of the pooled library estimated from the 

change in OD600 over the course of the experiment. Positive fold change RPM values 

indicated that TFI induction conveyed a growth benefit, whereas negative fold change RPM 

values indicated that the TFI induction conveyed a growth defect under the conditions 

assayed. We estimated the statistical significance of the TFI-mediated log2 fold change 

abundance values detected in two ways. For each TFI strain, we first calculated a z-score for 

each TFI-induced replicate, relative to uninduced. This is intended to assess the number of 

standard deviations a particular TFI-induced replicate is away from the null distribution 

estimated from the uninduced replicates. We calculated the z-score of the ith TFI-induced 

replicate using the following formula: zi =
x+,  i − x−−

σ−
, where x+, i represents the log2 RPM 

value for the ith TFI-induced replicate,  x−−  represents the average log2 RPM value across 

uninduced TFI replicates, and σ− represents the standard deviation of the log2 RPM values 

across uninduced TFI replicates. We can then summarize the z-score associated with a TF 

induction by averaging the z-scores calculated across induced TFI replicates. In addition to 

assessing significance by z-score, we also calculated p-values of log2 RPM fold change 

associated with each TFI strain induction by using the Student’s t-test. TFI strains that 

exhibited a log2 fold-change per doubling greater than 0.5 with z-score greater that 1 and t-

test p-value < 0.05 were deemed to have a significant growth phenotype under the condition 

assayed. The full z-scores and p-values for each TFI strain are reported in Table S1. The 
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code used to generate this processing is available at https://github.com/DavidRShermanLab/

TRIPscreen.

RNA-seq transcriptome profile data generation.

To profile the Mtb transcriptome response to exposure of individual drugs, cultures were 

diluted to OD600 ~ 0.2 (equivalent to 108 CFU/mL) and exposed to a minimum inhibitory 

concentration (MIC)-equivalent dose of drug for approximately 16 hours.

RNA was isolated from these cultures and were prepared for sequencing as described 

previously 14,49,50. Briefly, cell pellets in Trizol were transferred to a tube containing Lysing 

Matrix B (QBiogene) and vigorously shaken at maximum speed for 30 s in a FastPrep 120 

homogenizer (QBiogene) three times, cooling on ice between shakes. This mixture was 

centrifuged at maximum speed for 1 minute, and the supernatant was transferred to a tube 

containing 300 μL chloroform and Heavy Phase Lock Gel (Eppendorf). This tube was 

inverted for 2 minutes and centrifuged at maximum speed for 5 minutes. RNA in the 

aqueous phase was then precipitated with 300 μL isopropanol and 300 μL high salt solution 

(0.8 M Na citrate, 1.2 M NaCl). RNA was purified using a RNeasy kit following the 

manufacturer’s recommendations (Qiagen) with one on-column DNase treatment (Qiagen). 

Total RNA yield was quantified using a Nanodrop (Thermo Scientific).

To enrich the mRNA, ribosomal RNA was depleted from samples using the RiboZero rRNA 

removal (bacteria) magnetic kit (Illumina Inc, San Diego, CA). The products of this reaction 

were prepared for Illumina sequencing using the NEBNext Ultra RNA Library Prep Kit for 

Illumina (New England Biolabs, Ipswich, MA) according to manufacturer’s instructions, 

and using the AMPure XP reagent (Agencourt Bioscience Corporation, Beverly, MA) for 

size selection and cleanup of adaptor-ligated DNA. We used the NEBNext Multiplex Oligos 

for Illumina (Dual Index Primers Set 1) to barcode the DNA libraries associated with each 

replicate. To achieve adequate sequencing coverage, we multiplexed 40 libraries per 

sequencing run. The prepared libraries were quantified using the Kapa qPCR quantification 

kit, and were sequenced at the University of Washington Northwest Genomics Center with 

the Illumina NextSeq 500 High Output v2 Kit (Illumina Inc, San Diego, CA). The 

sequencing generated an average of 75 million base-pair single-end raw read counts per 

library.

Read alignment was carried out using the previously mentioned custom processing pipeline 

that harnesses the Bowtie 2 utilities47,48, available at https://github.com/

robertdouglasmorrison/DuffyNGS and https://github.com/robertdouglasmorrison/

DuffyTools49. The RNA-seq data profiling response to drug exposure generated for this 

study are publicly available at the Gene Expression Omnibus (GEO) at GSE151991.

Metabolite extraction.

Metabolomics experiments and analysis were performed according to published literature51. 

One milliliter of mid-log phase cultures (0.8 −1 OD580) was passed through 0.22-μm nylon 

filters and allowed to grow at 37°C for 5 days on Middlebrook 7H11 agar (BD) 

supplemented with 0.2% glycerol, 0.85g/L NaCl, 2 g/L D-glucose, and 5 g/L Fraction V 

BSA (Roche). On Day 6, Mtb -laden filters were transferred onto a reservoir containing 7H9 
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media (without tyloxapol) with 50 ng/ml ATc and left at 37°C for 24 hrs. Next, these 

acclimatized filters were exposed to fresh 7H9 media with and without INH (7.2 μM) and 

ATc. After 24 hours, these filters were quenched in precooled (−40°C) mix of acetonitrile/

methanol/water (40%:40%:20%). Metabolites were extracted by bead beating using 0.1 mm 

Zirconia beads and Precellys homogenizer (Bertin Instruments, Rockville, MD). Lysates 

were centrifuged and decontaminated by passing through Spin-X tube filters tubes (0.22 μm, 

Sigma).

Mass spectrometry and Liquid Chromatography.

Metabolomics was performed by separating 2 μL sample on a Diamond Hybrid Type C 

Column (Cogent) using 1200 liquid chromatography (Agilent) coupled to an Agilent 

Accurate Mass 6220 Time of Flight (TOF) spectrometer. To collect all classes of 

metabolites, two different solvents (solvent A: water with 0.2% formic acid and solvent B: 

acetonitrile with 0.2% formic acid) were used at the following gradients with 0.4 mL/min of 

flow rate. The gradient was: 85% B: 0–2 min; 80% B: 3–5 min; 75% B: 6–7 min; 70% B: 8–

9 min; 50% B: 10–11 min; 20% B: 11–14 min; 5% B: 14–24 min and 10 min of re-

equilibration period using 85% B. Ion abundances of INH and INH-NAD were determined 

using Profinder 8.0 and Qualitative Analysis 7.0 (Agilent Technologies, USA). Standard 

INH and INH-NAD were used to determine the accuracy of identified peaks. Fold change 

was calculated with-respect to the abundances of corresponding wild type strains (H37Rv or 

CDC1551).

Statistics and Reproducibility.

Unless indicated, experiments were performed three times, and the mean and standard 

deviation from biological replicates of representative experiments are reported. Statistical 

differences between means were evaluated by two-tailed Student’s t-tests, statistically 

significant correlation was evaluated by calculating a Pearson correlation coefficient and 

comparing against a Student’s t distribution, and statistical enrichment was evaluated by 

hypergeometric test, unless otherwise noted. The significance cutoff was set at p < 0.05, 

unless otherwise indicated.

Gene Ontology Enrichment Analysis.

The gene ontology (GO) term annotations for genes comprising the regulons of the TFs 

under analysis were taken from 52 and evaluated for statistical enrichment against the GO 

annotations for the entire gene set of the Mtb strain H37Rv using the hypergeometric test 

and further subjected to a Bonferroni correction for multiple hypothesis testing, with the 

number of independent tests estimated as the number of GO terms associated to at least 2 

genes in the H37Rv reference gene set (analogous to method used by 53). We further filtered 

the enriched GO terms to only those featured in the regulons for 2 more of the TFs under 

analysis.

Data Availability.

The data reported in the paper are available in the Supplementary Materials. The raw TRIP 

fastq sequence data files are deposited in the Sequence Read Archive database (https://
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www.ncbi.nlm.nih.gov/bioproject/PRJNA483505/). The RNAseq data are deposited in the 

Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE151991). The Transcription Factor Induction (TFI) strains are available from BEI 

resources (https://www.beiresources.org/Home.aspx).

Code Availability.

The code required to process the TRIP and RNAseq sequenced reads are available at: https://

github.com/robertdouglasmorrison/DuffyNGS, https://github.com/robertdouglasmorrison/

DuffyTools, and https://github.com/DavidRShermanLab/TRIPscreen.

Extended Data

Extended Data Fig. 1. Comparing TFI pool growth between experimental conditions.
Number of doublings for TFI strain pool over duration of TRIP experiments in the untreated 

vs. INH treated conditions, estimated from the change of OD600 over the course of the 

experiment. Data show mean ± SD of four biological replicates from a representative 

experiment (three independent experiments were performed in total).
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Extended Data Fig. 2. Chemical induction triggers mce3R expression change.
Expression fold change of mce3R relative to the housekeeping gene sigA, assessed by 

qPCR. Data show mean ± SD of 4 biological replicates from a representative experiment 

(two were performed in total). Conditions compared are in absence (white bars) and 

presence (black bars) of anhydrous-tetracycline (ATc) inducer, and presence and absence of 

INH exposure. Results show at least 8-fold activation of mce3R expression upon induction 

with ATc in both absence and presence of INH (p = 0.00035, two-sided t-test for −ATc 

untreated vs. +ATc untreated; p = 0.0036, two-sided t-test for −ATc + INH vs. +ATc + INH).
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Extended Data Fig. 3. mce3Rind metabolic viability after 7 days INH.
Viability upon TFI induction (blue) is compared to uninduced (white), as measured by 

luminescence (see Methods). Data presented as mean Error bars show ± SD from four 

biological replicates. ** indicates significant differences between induction states (p = 8.3 × 

10−6 comparing uninduced vs. TFI induced at 1.6 μM; p = 5.7 × 10−6 comparing uninduced 

vs. TFI induced at 1.8 μM; p = 1.3 × 10−3 comparing uninduced vs. TFI induced at 2.1 μM; 

p = 4.3 × 10−4 comparing uninduced vs. TFI induced at 2.4 μM; p = 7.6 × 10−3 comparing 

uninduced vs. TFI induced at 2.8 μM; p = 6.9 × 10−3 comparing uninduced vs. TFI induced 

at 3.2 μM; p = 4.6 × 10−4 comparing uninduced vs. TFI induced at 3.6 μM). Each p-value 

was calculated based on a two-sided t-test.
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Extended Data Fig. 4. Overlap of genes regulated by mce3R that also modulate expression in 
baseline response to INH exposure.
(A) Network diagram depicts the genes differentially expressed upon induction of mce3R 
expression (left), and upon exposure to INH (right). Three genes alter expression under both 

these conditions. (B) Table summarizes the expression fold-changes of the genes perturbed 

both by mce3R induction and INH exposure.
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Extended Data Fig. 5. Association between ctpD expression and INH sensitivity.
(A) CFU/mL at 0 days and 7 days of H37Rv (black bar) and a ctpD CRISPRi-knockdown 

strain without (yellow) and with (red) chemical induction of CRISPRi activity. Both strains 

were exposed to 3.6μM INH or no drug. There was no significant difference between the 

growth of strains without drug, and the average untreated CFU/mL is plotted in the gray bar. 

Data show mean ± SD of three biological replicates from two independent experiments (for 

H37Rv conditions) or one experiment (pJR965-ctpD conditions). There is a significant 

difference between the CRISPRi knockdown and wildtype strains (p = 0.00027 for Day 7 

H37Rv + INH vs. Day 7 pJR965-ctpD – ATc + INH, Wilcoxon ranksum test with continuity 

correction; p = 0.00027 for Day 7 H37Rv + INH vs. Day 7 pJR965-ctpD + ATc + INH, 

Wilcoxon ranksum test with continuity correction; p = 0.0012 for Day 7 pJR965-ctpD – ATc 

+ INH vs. Day 7 pJR965-ctpD + ATc + INH, Wilcoxon ranksum test with continuity 

correction). (B) qPCR quantification of ctpD expression levels relative to the wildtype 

H37Rv in the CRISPRi knockdown strain with and without chemical induction of activity. 

The CRISPRi strain exhibited marked repression even in the absence of chemical induction. 

Data shown are from two biological replicates for the CRISPRi knockdown strain, 

uninduced and four biological replicates for the CRISPRi knockdown strain with induction. 

The experiment was performed once.
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Extended Data Fig. 6. Comparing the effect of in vitro INH on mce3R and ctpD perturbation 
strains.
We measured the effect of mce3R induction in the CDC1551 strain background (blue) and in 

the ctpD::Himar1 strain background (orange) on Mtb survival in INH (3.6 μM), added on 

Day 0, as quantified by CFU/mL. Solid blue and orange lines indicate TFI induction and 

dashed blue and orange lines indicate TFI uninduced. As additional controls, we also 

compared survival of the CDC1551 wildtype strain (gray), as well as the ctpD::Himar1 

strain (red). The data suggest that mce3R induction conveys significant additional fitness 

defect relative to ctpD::Himar1 strain at day 14 (p = 0.00058, two-sided t-test comparing 

ctpD::Himar1:: mce3Rind TFI induced vs. ctpD::Himar1; p = 0.0024, two-sided t-test 

comparing mce3Rind (CDC1551) TFI induced vs. CDC1551). There appears to be a modest 

(though not statistically significant) difference in the extent of INH-mediated killing at 7 

days between the ctpD::Himar strain (red) and the ctpD::Himar1 strain with mce3R 
induction (orange solid) (p = 0.09, two-sided t-test). Data show mean ± SD of three 

biological replicates from one experiment.

Ma et al. Page 16

Nat Microbiol. Author manuscript; available in PMC 2021 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 7. Association between mce3R, ctpD expression and abundance of INH and 
INH-NAD adduct during drug exposure.
Relative abundance of INH and INH-NAD adduct in Mtb lysate (panels A, B, D, E) or 

supernatant (panels C, F) of strains exposed to 7.2μM INH for 24 hours. Panels A, B, and C 

show effect of ctpD transposon disruption and complementation with episomally ATc-

inducible ctpD expression. Panels D, E, and F show the effect of mce3R induction with or 

without ctpD transposon disruption. ctpD disruption conveyed increased intracellular INH 

and INH-NAD levels and concomitant decreased levels of INH in the supernatant. Induction 

of mce3R also increases intracellular INH and INH-NAD levels, but does not convey 

additional accumulation increase in the ctpD transposon strain background. Bars plot mean 

± SD for 3 biological replicates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of TRIP screen. See Methods for details.
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Figure 2. Regulon-mediated growth responses.
(A) Log-phase TRIP results. Dots represent mean abundance change of TFI strains induced 

vs. uninduced, normalized by the estimated number of pool doublings (averaged from four 

biological replicates). Red dots indicate z-score > 1, calculated from four replicates. Dotted 

lines specify ± 2 standard deviations, and dashed line denotes detection limit, signifying no 

growth. Shaded area represents strains with strong defects. Monoculture growth curves of 

two strains (blue, purple dots) are shown in (B) and (C) respectively, with induction (solid) 

or without (dashed). Data show mean ± standard deviation (SD) of three biological 

replicates from three independent experiments. (D) TRIP results with INH (y-axis) vs. no 

drug (x-axis) (each dot represents a mean of four biological replicates). Since INH can be 

bactericidal, some strains showed abundance changes < −1. Boxes demarcate strains with 

altered INH survival. Black dots represent strains: furA (furAind) and mce3R (mce3Rind). 

(E) mce3Rind colony forming units (CFU)/mL over 14 days in INH (black) vs. no drug 

(white) with induction (solid) or without (dashed). Data show mean ± SD of three biological 

replicates from one representative experiment (the experiment was performed independently 

three times) (p = 0.00012, two-sided t-test comparing Uninduced vs. TFI-induced in INH, 

day 8; p = 0.015, two-sided t-test comparing Uninduced vs. TFI-induced in INH, day 11; p = 

7.0 × 10−8, two-sided t-test comparing Uninduced vs. TFI-induced in INH, day 14). (F) 

mce3Rind metabolic viability after 7 days INH with induction (black) or without (white), 

measured by luminescence (see Methods). Data show mean ± SD of four biological 

replicates from one representative experiment (the experiment was performed independently 

three times). See Extended Data 3 for a version of panel (F) with the individual replicates 

visualized and the exact p-values for each individual comparison enumerated. * and ** 

indicate significant differences between induction states (p < 0.05 and p < 0.001, two-sided 

t-test, respectively).
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Figure 3. mce3R regulon reveals effector of INH susceptibility.
(A) Network representation of overlap between mce3R regulon and genes differentially 

expressed in wildtype response to INH exposure. Red arrows indicate genes activated at 

least 2-fold, and green lines indicate genes repressed at least 2-fold. (B) CFU/mL over 14 

days of ctpD::Himar1 transposon disruption strain (solid) compared to the wildtype strain, 

CDC1551 (dashed). Both strains were exposed to 3.6μM INH (black) vs. no drug (white). 

Data show mean ± SD from three biological replicates of one representative experiment (the 

experiment was performed independently three times) (p = 0.0021, two-sided t-test for 

CDC1551 + INH day 7 vs. ctpD::Himar1 + INH day 7; p = 0.029, two-sided t-test for 

CDC1551 + INH day 14 vs. ctpD::Himar1 + INH day 14). (C) Mass spectrometry 

quantification of relative intracellular INH-NAD adduct levels in the mce3Rind and 

ctpD::Himar1 strains after 24 hours of exposure to 7.2 μM INH show elevated INH-NAD 

levels relative to wildtype. There is no significant difference between INH-NAD levels in 

ctpD::Himar1 strain with and without mce3R induction. Data show mean ± SD of three 

biological replicates from one representative experiment (the experiment was performed 

independently two times) (p = 0.00067, two-sided t-test comparing CDC1551 vs. mce3Rind 

(CDC1551) TFI induced; p = 0.000015, two-sided t-test comparing CDC1551 vs. 

ctpD::Himar1; p = 0.00057, two-sided t-test comparing CDC1551 vs. 

ctpD::Himar1::mce3Rind TFI induced; p = 0.16, two-sided t-test comparing ctpD::Himar1 

vs. ctpD::Himar1::mce3Rind TFI induced).
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