Human Disease

Human Disease

Mycobacterium tuberculosis causes ~9 million new cases of active disease and 1.4 million deaths each year, and our tools to combat tuberculosis (TB) disease are universally outdated and overmatched. This project combines separate advances in systems biology and network modeling to produce an experimentally grounded and verifiable systems-level model of the MTB regulatory networks that affect disease progression.

From initial infection to the onset of symptoms, tuberculosis (TB) is a remarkably complex disease. We are collaborating with groups at the Center for Infectious Disease Research to test the concept that behaviors of host and pathogen are coordinated by interwoven regulatory networks, and that the outcome of infection (bacterial containment or active disease) is the product of many network-network interactions that vary both spatially and temporally. If so, then perturbing specific networks will both illuminate the topology of the larger network and allow us to define the steps and components critical to infection outcome. Our consortium of two projects and four Cores will test this hypothesis and reveal key features of TB disease progression in an iterative cycle: perturb carefully chosen subnetworks within both MTB and host; collect matched omics data sets; model, predict, and validate with new experiments.

Publications